Fungal biodiversity on maize kernels in an insecticide evaluation trial

Sonja Tančić Živanov*, Mirjana Lalošević, Radivoje Jevtić, Filip Franeta, Željko Milovac, Dušan Stanisavljević and Božana Purar
Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21 000 Novi Sad, Serbia
*Corresponding author: sonja.tancic@ifvcns.ns.ac.rs

Received: 22 March 2019
Accepted: 10 April 2019

SUMMARY

The European corn borer (ECB) Ostrinia nubilalis and Fusarium ear rot Fusarium spp. pose a continuous threat to maize production worldwide. There are several reports indicating that ECB damage to maize ears promotes Fusarium ear rot infection. The aim of this study was to monitor the influence of different insecticide treatments (a.i. chlorantraniliprole, indoxacarb, and chlorantraniliprole+lambda-cyhalothrin) on the ECB and fungal diversity on maize kernels in the field in a four-year trial (2013-2016).

A total of 16 different fungal genera were isolated from maize kernels, and Fusarium species were confirmed to be the dominant pathogens, present in all treatments, throughout the four years of experiments. The incidence of Aspergillus spp. and Penicillium spp. was established to be low. Apart from Fusarium species, the most frequent genera were: Aspergillus spp., Mortierella spp., Mucor spp., Penicillium spp., Acremonium spp. and Rhizopus spp.

Treatments with chlorantraniliprole and chlorantraniliprole+lambda-cyhalothrin showed higher efficacy, though not statistically significant, compared to indoxacarb, in reducing the number of ECB larvae and damage they cause. However, no direct effect on the number of isolated fungal genera has been observed in any of the three insecticide treatments.

Keywords: plant pathogenic fungi; maize; biodiversity; European corn borer; insecticides

INTRODUCTION

Maize (Zea mays L.) is arguably the most widely grown crop in the world. It is mainly used for animal feed (82%), while only 4% of the global production is destined for human consumption (ISTAT, 2018). In Serbia, maize is cultivated on approximately 1.000.000 ha with an annual production of 4.000.000 t, which makes this plant the most important crop in Serbia (FAOSTAT, 2018).

The European corn borer (ECB) - Ostrinia nubilalis and Fusarium ear rot (Fusarium spp.) are two major yield reducing factors in maize production. The maize silk-channel is the most common pathway for ear rot infection. However, Fusarium species can also infect the ear through kernel damage created by insects or birds.
It has been well documented that second generation ECB larvae can enhance fungal infections (Mencarelli et al., 2013; Blandino et al., 2015). It has also been reported that the ECB promotes Fusarium verticillioides infection of maize kernels in temperate areas (Blandino et al., 2010).

The most common Fusarium species on maize kernels in temperate regions is F. verticillioides along with two accompanying species of the Liseola section - F. proliferatum and F. subglutinans (Logrieco et al., 2002; Tóth et al., 2012). Under cooler climatic conditions with heavy rainfall during the growing season, F. graminearum occurs more frequently (Reid et al., 1999). A recent study showed that F. graminearum (1.08%), F. subglutinans (8%) and F. verticillioides (25.75%) were present in freshly harvested maize kernels in Serbia in 2014 (Krnjaja et al., 2015).

Fusarium species are capable of producing a vast number of mycotoxins (fumonisins, fusaric acid, fusaproliferin, beauvericin, moniliformin, deoxynivalenol, zearalenone, diacetoxyscirpenol, etc.), which are able to cause serious problems to both animal and human health. This makes them one of the most important maize pathogens worldwide (Leslie & Summerell, 2006; Blandino et al., 2015). In recent years, fumonisins, deoxynivalenol, zearalenone and diacetoxyscirpenol have been detected on maize kernels in Serbia (Krnjaja et al., 2012; Tančić, 2009; Jajić et al., 2010). Considering the fact that maize is consumed both as unprocessed and processed food or feed, while mycotoxin contamination starts in the field, food quality and safety should be improved through agronomic prevention strategies.

Several factors can facilitate Fusarium infection of maize ears, and injuries caused by insect feeding create suitable infection sites for the fungus (Munkvold & Desjardins, 1997). There are reports which indicate that ECB damage to maize ears is the most responsible factor for Fusarium ear rot infection caused by several Fusarium species (Munkvold et al., 1997; Alma et al., 2005). It has also been documented that insecticide treatments against the ECB can also have a positive effect on maize production by decreasing the incidence of Fusarium ear rot development (Blandino et al., 2009). There is, however, much less evidence of the effects of ECB damage on the occurrence of fungi from other genera.

The aim of this study was to monitor the influence of different insecticide treatments (i.a. chlorantraniliprole, indoxacarb, and chlorantraniliprole + lambda-cyhalothrin) on the ECB and fungal diversity on maize kernels in the field in a four-year trial (2013-2016).

MATERIAL AND METHODS

Field trial design

The experiment was carried out on a commercial maize dent hybrid (NS 6030, NS Seme, FAO group 600) on an experimental site at Rimski Šančevi near Novi Sad, Serbia, from 2013 to 2016. Three insecticide treatments were compared to an untreated control: T1 - chlorantraniliprole (100 ml ha⁻¹); T2 - indoxacarb (250 ml ha⁻¹); and T3 - chlorantraniliprole + lambda-cyhalothrin (200 ml ha⁻¹). The experiment setup consisted of a completely randomized block design in four replicates. Each plot consisted of four rows of maize, separated from other plots by one untreated row on each side. The length of each plot was 10 m, with a spacing of 2 m between blocks.

ECB flight activity was monitored using a light trap (model RO Agrobečej, Serbia), which was active from 20:00 to 7:00 h every day during the maize growing season. The sampled specimens were removed and counted on a daily basis. The insecticides were applied during peak flight of the ECB, which usually occurred in the first week of August, using a backpack sprayer unit with a high clearance attachment with 6 nozzle booms (model 315-HCB-4) from Bellspray Inc, USA. The working height of the sprayer was manually adjustable (0.6–4.2 m) and the spray volume was 400 l ha⁻¹ at a pressure of 200 kPa with an operation speed of 4–6 km h⁻¹.

Assessments of insecticide effectiveness consisted of counting the number of surviving larvae and the number of injuries on 80 ears per treatment.

Analyses of mycobiota biodiversity

Ten ears with fungal disease symptoms were randomly collected from each plot (totaling 40 ears per treatment) for biodiversity assessment. Ten kernels per ear were chosen from infected area. In total, 400 kernels per treatment were analyzed for fungal species diversity. The kernels were surface sterilized in 1% sodium hypochlorite solution for 1 minute, rinsed three times with sterile distilled water, dried and placed on 2% water agar (WA) medium amended with streptomycin (50 mg L⁻¹). After 7 days of incubation at room temperature (25±2°C) in daylight, the kernels were examined and morphological identification of different species was performed according to Watanabe (2010).

Data analysis

The incidence of species (I) was calculated as: $I (%) = \frac{[\text{Number of one species colonies which occurred in a}]}{[\text{Number of colonies examined}]} \times 100$. Under cooler climatic conditions with heavy rainfall during the growing season, F. graminearum occurs more frequently (Reid et al., 1999). A recent study showed that F. graminearum (1.08%), F. subglutinans (8%) and F. verticillioides (25.75%) were present in freshly harvested maize kernels in Serbia in 2014 (Krnjaja et al., 2015).
Sixteen fungal genera in total were detected in maize seed samples during the four-year trial (Figure 1). *Fusarium* species were confirmed as the dominant pathogens of maize kernels in all four years and they were present in all treatments. The incidence of *Fusarium* species on maize kernels was almost constant with little variation throughout the trial: 82.99% (2013), 83.55% (2014), 85.02% (2015) and 85.01% (2016). In total, 11 *Fusarium* species were identified on maize kernels: *F. equiseti*, *F. graminearum*, *F. oxysporum*, *F. proliferatum*, *F. pseudograminearum*, *F. semitectum*, *F. solani*, *F. sporotrichioides*, *F. subglutinans*, *F. verticillioides*, and one unidentified *Fusarium* species. The number of *Fusarium* species was more or less constant and varied from 8 to 10 depending on trial year (data not shown). As expected based on earlier research in Serbia, the dominant species were: *F. verticillioides*, *F. graminearum* and *F. proliferatum*. In general, the most common *Fusarium* species that have been isolated from maize kernels are: *F. graminearum*, *F. verticillioides* and *F. subglutinans*, but also *F. culmorum*, *F. proliferatum* and *F. equiseti*, depending on geographic location (Cotten & Munkvold, 1998; Velluti et al., 2000; Torres et al., 2001). In Serbia, those species were detected on maize kernels in a 1994-1998 study by Lević et al. (1997), and *F. verticillioides* was the most abundant species in those samples (63%), followed by *F. subglutinans* (50.6%), *F. graminearum* (12.2%), *F. proliferatum* (9.6%) and *F. oxysporum* (5.8%). *Fusarium* species which have been sporadically found in maize kernel samples in Serbia are: *F. solani*, *F. equiseti*, *F. sporotrichioides*, *F. oblamydosporum*, *F. crookwellense* and *F. semitectum* with incidences of less than 3 % during the period from 1994 to 1996 (Lević et al., 1997), and *F. equiseti* was the most abundant species during the period from 1994 to 1996 (Lević et al., 1997). This is consistent with the results of this present study, in which *F. equiseti*, *F. oxysporum*, *F. semitectum* and *F. sporotrichioides* were sporadically found in maize kernel samples.

Apart from the genus *Fusarium*, species from another 15 genera were also isolated from infected maize kernels over the period from 2013 to 2016: *Acremoniella* sp., *Acremonium* spp., *Alternaria* spp., *Aspergillus* spp., *Botrytis* spp., *Geotrichum* spp., *Gliocladium* spp., *Hyalodendron* spp., *Mortierella* spp., *Mucor* spp., *Paulomycetes* spp., *Penicillium* spp., *Rhizopus* spp., *Staphylotherichum* spp. and *Trichoderma* spp. (Figure 1). Species from the genera *Mucor* (9%) and *Aspergillus* (4.27%) were the most common in 2013 (excluding *Fusarium*), while the genus *Mortierella* was the most common in 2014, 2015 and 2016 with average incidence...
frequencies of 9.3%, 5.37% and 4.85%, respectively. Species found in all four trial years in at least one treatment were: *Fusarium* spp., *Gliocladium* spp. and *Mucor* spp. The genera *Acremonium* and *Aspergillus* were found in all years except 2016, *Rhizopus* in all except 2014, while *Mortierella* was present in each year except 2013. Species from the genera *Alternaria* and *Paecilomyces* were found in 2013 and 2014, *Penicillium* in 2013 and 2015, and *Hyalodendron* in 2013 and 2016. Species of the genera *Acremoniella*, *Botrytis*, *Geotrichum*, *Staphylotrichum* and *Trichoderma* were detected in one trial year only. The species commonly found together with *Fusarium* spp. as accompanying species in the examined maize kernel samples were: *Penicillium* spp., *Aspergillus* spp., *Mortierella* spp., *Mucor* spp., *Rhizopus* spp., and *Gliocladium* spp. with incidences of up to 7.33%, 2.45%, 16.09%, 21.33%, 12.50% and 6.54%, respectively (Figure 1). These accompanying species are common mycobiota on maize kernels in Serbia and worldwide and already confirmed in some previous studies (Krnjaja et al., 2004; Tančić, 2009; Mendoza et al., 2017; Xing et al., 2018; Tóth et al., 2012). The lower incidence of *Aspergillus* and *Penicillium* species in the present study is consistent with the findings of Rodríguez Páez et al. (2011), who also detected *Penicillium* spp. and *Aspergillus* spp. in maize kernels at low percentages -0.5% and 0.25%, respectively. This apparently unusual finding could be partly attributed to the high incidence of competitive *Fusarium* species found during all trial years. Lević et al (2013), on the other hand, observed an uncommonly high frequency and incidence of *Aspergillus* species on maize kernels in 2012. This fact emphasizes the complexity of the factors influencing fungal infections (weather conditions – insect occurrence – fungal development). The same authors suggest that high incidences of *Aspergillus* species could be attributed to extremely stressful agrometeorological conditions, i.e. high temperatures and severe drought, which occurred in 2012, while the ECB occurrence and damage were listed as a secondary factor.

In conclusion, the results of this study showed that a total of 16 fungal genera were isolated from maize kernels, while *Fusarium* species were confirmed as the dominant pathogens of maize kernels in all four years, and they were present in all treatments. The incidence of *Aspergillus* spp. and *Penicillium* spp. was found to be low. Apart from *Fusarium* species, the most commonly represented other genera were: *Aspergillus* spp., *Mortierella* spp., *Mucor* spp., *Penicillium* spp., *Acremonium* spp. and *Rhizopus* spp.

Treatments with chlorantraniliprole and chlorantraniliprole+lambda-cyhalothrin showed higher efficacy, though not statistically significant compared to indoxacarb, in reducing the number of ECB larvae and their resulting damage. However, no direct effect on the number of isolated fungal genera was observed in any of the three insecticide treatments. The relationship between insect feeding-caused damage and fungal occurrence indicates that reduction in fungal development, and consequently in mycotoxin production, is a complex problem which requires further research and an integrated pest management approach.

Table 1. Treatment effects on fungal diversity and ECB larval survival in maize ears

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Species No.</th>
<th>Species average*</th>
<th>Larvae No.*</th>
<th>Injuries No.*</th>
<th>Abbott (%)</th>
<th>Species No.</th>
<th>Species average*</th>
<th>Larvae No.*</th>
<th>Injuries No.*</th>
<th>Abbott (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>6</td>
<td>2.5 a</td>
<td>249 a</td>
<td>72 a</td>
<td>-</td>
<td>6</td>
<td>2.5 a</td>
<td>33 a</td>
<td>3 a</td>
<td>-</td>
</tr>
<tr>
<td>T1</td>
<td>5</td>
<td>2.2 a</td>
<td>49 b</td>
<td>28 a</td>
<td>80.32</td>
<td>3</td>
<td>2.5 a</td>
<td>0 b</td>
<td>0 a</td>
<td>100.0</td>
</tr>
<tr>
<td>T2</td>
<td>8</td>
<td>3.1 a</td>
<td>97 b</td>
<td>56 a</td>
<td>61.04</td>
<td>7</td>
<td>3.4 a</td>
<td>9 b</td>
<td>2 b</td>
<td>75.76</td>
</tr>
<tr>
<td>T3</td>
<td>6</td>
<td>2.5 a</td>
<td>36 b</td>
<td>48 a</td>
<td>85.54</td>
<td>4</td>
<td>2.4 a</td>
<td>3 b</td>
<td>2 a</td>
<td>90.91</td>
</tr>
<tr>
<td>P-Value</td>
<td>0.268</td>
<td>0.000</td>
<td>0.312</td>
<td></td>
<td></td>
<td>0.076</td>
<td>0.002</td>
<td>0.426</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>7</td>
<td>2.8 a</td>
<td>13 a</td>
<td>20 a</td>
<td>-</td>
<td>5</td>
<td>2.7 a</td>
<td>46 a</td>
<td>19 a</td>
<td>-</td>
</tr>
<tr>
<td>T1</td>
<td>4</td>
<td>2.5 a</td>
<td>0 a</td>
<td>9 a</td>
<td>100.0</td>
<td>4</td>
<td>3.2 a</td>
<td>5 b</td>
<td>2 b</td>
<td>89.13</td>
</tr>
<tr>
<td>T2</td>
<td>5</td>
<td>2.0 a</td>
<td>2 a</td>
<td>8 a</td>
<td>84.62</td>
<td>5</td>
<td>2.8 a</td>
<td>13 b</td>
<td>2 b</td>
<td>71.74</td>
</tr>
<tr>
<td>T3</td>
<td>4</td>
<td>2.2 a</td>
<td>1 a</td>
<td>9 a</td>
<td>92.31</td>
<td>4</td>
<td>2.9 a</td>
<td>5 b</td>
<td>0 b</td>
<td>91.30</td>
</tr>
<tr>
<td>P-Value</td>
<td>0.420</td>
<td>0.056</td>
<td>0.153</td>
<td></td>
<td></td>
<td>0.899</td>
<td>0.000</td>
<td>0.001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Different letters indicate significant differences according to Tukey’s test
Figure 1. Fungal incidence detected on maize ears and kernels after different insecticide treatments from 2013 to 2016 (control – C, chlorantraniliprole – T1, indoxacarb - T2, chlorantraniliprole + lambda-cyhalothrin - T3)
ACKNOWLEDGEMENT

This research was a part of projects TR31073 and TR31025 funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia.

REFERENCES

Rodríguez Páez, C.L., Pérez Reyes, M.C., Aguilar, C.H., Domínguez Pacheco, F.A., Martínez, E.M., Orea, A.C.,
Biodiverzitet gljiva na zrnima kukuruza u ogledu za ispitivanje efikasnosti insekticida

REZIME

Tretmani sa hlorantraniliprolom i hlorantraniliprol+lambda-cihalotrinom su pokazali veću efikasnost, ali ne i statistički značajnu, u odnosu na indoksakarb u smanjenju broja larvi kukuruznog plamenca. Takođe, i pored manjeg broja vrsta registrovanih u ova dva tretmana, nije uočen statistički značajan uticaj ni jednog ispitivanog tretmana na broj rodova gljiva prisutnih u uzorcima.

Ključne reči: patogene gljive; kukuruz; biodiverzitet; kukuruzni plamenac; insekticidi