Field Efficacy of Mandipropamid for the Control of Potato Late Blight

Emil Rekanović1, Miloš Stepanović1, Milan Stević2, Ivana Potočnik1, Biljana Todorović1 and Svetalana Milijašević-Marčić1

1Institute of Pesticides and Environmental Protection, Laboratory of Applied Phytopathology, Banatska 31b, 11080 Belgrade, Serbia
(emil.rekanovic@pesting.org.rs)
2University of Belgrade, Faculty of Agriculture, Institute of Phytopharmacy, Nemanjina 6, 11080 Belgrade, Serbia

Received: March 25, 2010
Accepted: April 8, 2010

SUMMARY

The efficacy of mandipropamid (Revus 250 SC) in controlling Phytophthora infestans in potato was evaluated in field trials. The efficiencies of Revus 250 SC in comparison with standard fungicides Quadris (azoxystrobin) were tested in several localities in Serbia (Kasarske Livade, Valjevska Kamenica and Opovo) in 2007 and 2008. Both of the tested fungicides exhibited high efficacy in controlling potato late blight. The differences in the efficacy of Revus 250 SC (96.3-99.2%) and Quadris (94.1-95.5%) were insignificant. Our experiments showed that the investigated fungicide was highly effective against P. infestans even under high disease pressure.

Keywords: Field trials; Potato late blight; Mandipropamid; Efficacy

INTRODUCTION

Potato late blight caused by Phytophthora infestans (Mont.) de Bary is the most important foliar and tuber disease of potato, both in field and under storage conditions (Fry and Goodwin, 1997). The incidence of a more aggressive strain of P. infestans, resistance of this pathogen to metalaxyl and the potential loss of some currently affective protective fungicides, contributed to the complexity of the issue (Kirk et al., 2000). The continuous search for new anti-oomycete compounds, driven by resistance problems and the need for environmentally safe pesticides, suggested recently that mandipropamid may resolve the issue (Lamberth et al., 2006).

Mandipropamid is a new fungicide effective against foliar oomycete pathogens but it does not control Pythium spp. (Huggenberger et al., 2005; Cohen et al., 2007). Together with dimethomorph, flumorph, iprovalicarb and benthiavalicarb, it was classified into one group of carboxylic acid amide (CAA) fungicides, mainly because filed isolates of Plasmodiophora viticola, showed cross-resistance to all the members of the group (FRAC, 2005; Cohen et al., 2007; Gisi et al.,
The mode of action of CAA fungicides is not known. Biochemical studies with the mandelamide compound SX 623509 in mycelium of *P. infestans* suggested alternations in phospholipid biosynthesis, with inhibition of phosphatidylcholine (lecithin) biosynthesis as the main target (Griffiths et al., 2003; Cohen et al., 2007). The suggested inhibited enzyme was phosphocholinetransferase, the last enzyme in the Kennedy pathway (Griffiths et al., 2003; Cohen et al., 2007).

Mandipropamid is highly effective in preventing spore germination. It is also an inhibitor of mycelial growth and sporulation (Huggenberger et al., 2005). Being rapidly adsorbed to the wax layer of the plant surface, mandipropamid provides a rainfast and long-lasting barrier to fungal diseases (Lamberth et al., 2008). Mandipropamid has a moderate amount of translaminar and acropetal systemicity, and is most effective when used as a protectant fungicide; however, it has some degree of post-infection activity (Stein and Kirk, 2003).

The objective of this study was to evaluate the efficacy of mandipropamid against *Phytophthora infestans* in commercial potato fields in Serbia.

MATERIAL AND METHODS

Field experiments were conducted to evaluate the efficacy of mandipropamid (250 g/l, Revus 250 SC, Syngenta AG) against potato late blight. Azoxystrobin (250 g/l, Quadris, Syngenta AG) served as the standard treatment. Application rates are listed in Tables 2 and 3. All the trials were carried out in 2007 and 2008 in the following localities: Kasarske Livade (Šabac)(GPS: N 44 44 337; E 19 39 638), Valjevska Kamenica (GPS: N 44 19 638; E 19 41 542), and Opovo (GPS: N 45 02 092; E 20 27 290). The tests were laid down as randomized plots (25 m², 5.0 X 5.0 m), replicated 4 times with 90-100 plants/plot. Seed potato tubers (variety Desiree) were used in all the trials and sown into the soil between mid-April and early May.

Applications were made using a knapsack sprayer (Solo 425, Germany) to simulate practical applications by farmers (water volume: 600 liter/ha). Initiation of application was generally adjusted to local practice in Serbia, starting from BBCH (Biologische Bundesanstalt, Bundessortenamt and Chemical Industry) 55-65 (pre- to full-flowering) until BBCH 70-75 (beginning of maturity) (Meier, 1997). Five foliar sprays were applied in all the trials at approximately 6-12-day intervals in preventive programmes. Application details are listed in Table 1.

Disease incidence was evaluated approximately two weeks after the last fungicide application. In every assessment, 20 plants in the central part of each plot were evaluated. Disease percentage on plants was rated on a scale of 0 (no disease) to 5 (more than 50% infested) according to EPPO guideline PP 1/2(3) (EPPO, 1997a). Disease severity was evaluated using Townsend-Heuberger’s formula (Puntner, 1981):

\[
\text{Disease severity} = \frac{\sum(\text{scale} \times \text{number of plants}) \times 100}{5 \times 20}
\]

The data were analysed by one-way completely randomized ANOVA and means were compared according to Duncan’s test (EPPO, 1997b; EPPO, 1997c).

<table>
<thead>
<tr>
<th>Year</th>
<th>Locality</th>
<th>Date of evaluation</th>
<th>Application interval (days)</th>
<th>Number of applications</th>
<th>Date of application</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>Kasarske Livade</td>
<td>July 2</td>
<td>7-11</td>
<td>4</td>
<td>May 21, 29, June 8, 19</td>
</tr>
<tr>
<td>2007</td>
<td>Valjevska Kamenica</td>
<td>July 17</td>
<td>10-12</td>
<td>3</td>
<td>June 13, 25, July 5</td>
</tr>
<tr>
<td>2008</td>
<td>Valjevska Kamenica</td>
<td>July 21</td>
<td>7-11</td>
<td>5</td>
<td>June 3, 10, 16, 27, July 8</td>
</tr>
<tr>
<td>2008</td>
<td>Opovo</td>
<td>July 24</td>
<td>6-10</td>
<td>4</td>
<td>June 11, 17, 26, July 7</td>
</tr>
</tbody>
</table>
RESULTS

In 2007, disease pressure in the trials was significant with 13.4-31.3% infected potato plants per plot in the untreated control. All the treatments were effective against the potato late blight pathogen and reduced disease severity significantly in all the experiments, compared with the untreated plots. Among the tested fungicides, the higher concentration of Revus 250 SC showed the highest efficacy in all trials (97.1 and 99.0%) (Table 2). There was no significant difference between the efficacies of Revus 250 SC at both concentrations (96.3-93.8%) and standard fungicide Quadris (94.1 and 95.2%) (Table 2).

Table 2. *P. infestans* - Disease intensity on potato leaves and fungicide efficacy (locality: Kasarske Livade and Valjevska Kamenica, 2007)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Rate (l/ha)</th>
<th>Kasarske Livade</th>
<th>Valjevska Kamenica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Disease severity (%)</td>
<td>Efficacy (%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sd¹</td>
<td>Efficacy (%)</td>
</tr>
<tr>
<td>Revus 250 SC</td>
<td>0.6</td>
<td>0.1 a</td>
<td>0.1</td>
</tr>
<tr>
<td>Revus 250 SC</td>
<td>0.5</td>
<td>0.3 a</td>
<td>0.3</td>
</tr>
<tr>
<td>Quadris</td>
<td>0.75</td>
<td>0.7 a</td>
<td>0.2</td>
</tr>
<tr>
<td>Untreated Kontrola</td>
<td>–</td>
<td>13.4 b</td>
<td>2.3</td>
</tr>
<tr>
<td>LSD</td>
<td>–</td>
<td>1.9</td>
<td>2.6</td>
</tr>
</tbody>
</table>

*Mean values in columns followed by different letters are significantly (p<0.05) different according to Duncan's test
¹Standard deviation

Table 3 summarizes the data on disease intensity on potato leaves and fungicide efficacy in the localities Valjevska Kamenica and Opovo in 2008. Like in 2007 higher concentration of Revus 250 SC showed the highest efficacy in all the trials (97.1 and 99.2%) (Table 3). There was no significant difference between the efficacies of the tested fungicide Revus 250 SC (96.5-99.5%) and Quadris (94.6 and 95.5%) (Table 3).

Table 3. *P. infestans* - Disease intensity on potato leaves and fungicide efficacy (locality: Valjevska Kamenica and Opovo, 2008)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Rate (l/ha)</th>
<th>Valjevska Kamenica</th>
<th>Opovo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Disease severity (%)</td>
<td>Efficacy (%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sd¹</td>
<td>Efficacy (%)</td>
</tr>
<tr>
<td>Revus 250 SC</td>
<td>0.6</td>
<td>0.2 a</td>
<td>0.1</td>
</tr>
<tr>
<td>Revus 250 SC</td>
<td>0.5</td>
<td>0.8 a</td>
<td>0.2</td>
</tr>
<tr>
<td>Quadris</td>
<td>0.75</td>
<td>1.3 a</td>
<td>0.4</td>
</tr>
<tr>
<td>Untreated</td>
<td>–</td>
<td>23.3 b</td>
<td>3.6</td>
</tr>
<tr>
<td>LSD</td>
<td>–</td>
<td>2.9</td>
<td>1.8</td>
</tr>
</tbody>
</table>

*Mean values in columns followed by different letters are significantly (p<0.05) different according to Duncan's test
¹Standard deviation
DISCUSSION

This study shows that the mandipropamid is highly effective against *P. infestans*, even under high disease pressure, confirming and extending the data obtained in previous trials conducted on potato in Israel (Cohen et al., 2007). The new products showed a remarkable activity against potato late blight ensuring longer intervals of protection during periods of high epidemic risk (6-12 days).

Similar trials carried out on several locations in Serbia, also showed that mandipropamid was the most effective in potato late blight control (Stević et al., 2007; Rekanović et al., 2008).

Whilst resistance to CAAs in *P. viticola* was detected in 1994, shortly after the introduction of dimethomorph in France, no resistance has been reported in field isolates of *P. infestans*, even though dimethomorph has been in use for more than 15 years (Cohen et al., 2007; Gisi et al., 2007). The reasons of this are lower fitness of resistant isolates *P. infestans*, different epidemiology of this two pathogens (oospores of *P. viticola* initiate epidemics in the spring, whereas *P. infestans* does not necessarily do so), and the fact that in *P. viticola*, resistance to CAAs in filed isolates was found to be controlled by recessive genes (Gisi et al., 2007). Recessive genes for resistance would need several sexual recombinations to be fixed in the population and expressed phenotypically, which in *P. infestans* may not happen frequently enough for establishment in the field (Cohen et al., 2007).

Sensitivity to the mandipropamid in *P. infestans* was measured for isolates collected between 1989 and 2002 in Israel prior to the commercial use of this fungicide (baseline sensitivity, 44 isolates), and from mandipropamid-treated (25 isolates) and untreated fields (215 isolates) in nine European countries and Israel between 2001 and 2005. All the isolates were sensitive to mandipropamide, with EC_{50} values ranging from 0.02 to 2.98 μg/ml (Cohen et al., 2007). Although this experiment suggests that isolates resistant to CAA fungicides may not appear in field populations, suitable anti-resistance precautions should be taken, including continuous monitoring, preventive use of the products, limitation of the number of applications per season (maximum 50% of the total number of intended applications for late blight control), and use of CAA products within a spray programme with fungicides of other chemical classes (Cohen et al., 2007; Anonymous, 2009).

ZAHVALNICA

Ovaj rad je realizovan kao deo projekta TR 20036 – Razvoj i unapređenje bioracionalnih metoda zaštite bilja od bolesti i štetočina, Ministarstva za nauku i teholski razvoj Republike Srbije.

REFERENCES

Efikasnost mandipropamida za suzbijanje prouzrokovača plamenjače krompira u poljskim uslovima

REZIME

Ključne reči: Ogledi u poljskim uslovima; prouzrokovač plamenjače krompira; mandipropamid; efikasnost